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Using patterned substrates to promote mixing in microchannels
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Using a lattice Boltzmann model for fluid dynamics, we investigate the flow and phase behavior of a binary
fluid moving over a patterned substrate within a microchannel. The binary fluid consists of two immiscible
componentsA and B, and this liquid is subjected to a Poiseuille flow. The substrate is decorated with a
checkerboard pattern @ and B-like patches. Through a coupling of hydrodynamics and thermodynamics,
each component is driven to flow from the nonwettable domains to wettable regions. As a consequékce, the
and B fluids undergo extensive mixing within the microchannels. We investigate how the degree of mixing
depends on the size of the patches, the velocity of the imposed flow field, and the characteristics of the fluid.
The results provide guidelines for creating localized “mixing stations” within microfluidic devices. The find-
ings also reveal how a combination of imposed flow fields and surface patterning can be exploited to control
the phase behavior of complex fluids.

DOI: 10.1103/PhysReVvE.65.031502 PACS nuner64.75+g, 47.11+j

I. INTRODUCTION One of the challenges inherent in modeling such a com-
plex system is incorporating not only the interactions be-
Microfluidics involves the transport of minute quantities tween the components but also, the interactions between the
of liquids in networked channels that are 10-1@6n wide. ~ fluid and the substrate, i.e., wettability and surface tension,
Microfluidic systems lie at the heart of the lab-on-a-chip con-Which play a dominant role in the behavior of confined fluids
cept, which has the potential to shrink a room full of analyti-[8—15]. In addition, the model must describe the complicated
cal instruments onto a compact, hand-held device. In order tBlicron-scale dynamics that arise from the above interac-
facilitate the fabrication of microfluidic devices, it is impor- tions. To capture these different features, we adopt the lattice

tant to develop predictive models that reveal the thermodyBoltzmann approach, a simulation technique for fluid dy-
namic behavior and flow patterns of complex fluids innamics. This model captures the thermodynamic behavior of
micron-sized channels. Of particular importance is usingNultiphase fluids[16] and can predict flow patterns in
these models to design effective methods for mixing multi-micron-sized pore§17]. Below, we introduce a method for
component fluids in the narrow chambgt$ Extensive mix- including the wetting interactions between the fluids and the
ing between components in microchannels is difficult be-underlying substrate. Thus, we can develop correlations
cause the small dimensions of the system constrain the flui@mong surface wettability, phase behavior and flow patterns
to move in a laminar fashiofii.e., low Reynolds number in the system.

flow). In the absence of turbulent flow, there is little mixing

between the various confined fluids and thus, reagents and Il. THE MODEL

sample can only undergo limited interactions.

Numerous studies on thin films of binary fluids have We consider two immiscible fluidsl8], A andB, moving
shown that the phase behavior and morphology of the mixthrough the microchannel shown in Fig. 1, which represents
tures are significantly affected by the wetting properties ofa top-down view of the system. A Poiseuille flow is imposed
the underlying substraiesee, for example, Refi2—5]). Fur-  on the fluids by applying a constant pressure gradient along
thermore, a patterned surface with preferential wetting interthe x direction. The “floor” of the channel is patterned with
actions can give rise to a rich variety of phenomena. Foghemically distinct patches. In particular,Bapatch (which
example, for thin films of binary fluids, the system can be

driven to mimic the design in the underlying substridg]. y box 1 box 2

In the studies cited above, the films are stationary, i.e., there h B I 4

is no imposed flow in the system. One expects that an exter- oL _|25 L _|

nal flow field would substantially modify the properties of 2% B o

patterned films. In terms of microfluidic applications, it may A ——— ——

be possible to couple the effects of the substrate and the A | B B |

imposed flow to control the behavior of the mixture. In this L L >
a a+l a+2 X

paper, we use a computational model to analyze how the
phase behavior of binary fluids under imposed flow is af- |G, 1. Schematic drawing of the channel filled with AfB
fected by chemically distinct patterns in the underlying sur-pinary fluid. Black represents th&erich phase and white indicates
face. Through these studies, we show that patterned sulhe B-rich phase. Boxes 1 and 2 mark the pairs of chemically dis-
strates can be exploited to drive extensive mixing of binarytinct patches. Letters within each box indicate the chemical nature
fluids flowing in microchannels. (A- or B-like) of the patch.
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preferentially attracts thB componentis introduced within \p #? T p+d
the A stream and ai patch(which preferentially attracts the W(p,p,T)= —( 1-—|=Tp+5(p+ ¢)In< )

A componentis placed within theB stream. The contiguous 4 P 2 2

A and B patches constitute the region marked “box 1,” T — ¢

which spans the width of the chann@lee Fig. 1 In the +_(p_¢)|n(p ) (4)
adjacent “box 2,” the arrangement of the patches is reversed, 2 2

so that entire pattern resembles>a2checkerboard. Experi-
mentally such chemically distinct regions can be create
through microcontact printinfL9] or a combination of pho-
tolithography and self-assembled monolayer chemis26y.
The dynamics of the binary fluid inside the channel in

dfhe second term in E¢3) describes the energy of the inter-
face between the two phases; the coefficleista measure of
the surface tension. The last term in E8). is an interaction
potential that introduces the coupling between the order pa-

F'gd' Saie dest.crlbztif by. a NaV|et(—c[SEtoke§ ]e?uaffq. (%j)] rameter and the chemically distinct patches. It is through this
agrararlu—:(‘:tcé?v\?v%ilgr?-cgaur:cotgr?z%iatée I?J.cgl)cocr)r: ositi%rn %rf th(’g_jerm that we model the preferential wetting interactions.
Einary ﬂui;j b= p°(r)— pl(r), where p(r) andF:ﬁ(r) are 'I_'he wetting interactions tal_<e the foIIOV\_/ing forteee Fig.
the number’ densities of eac'h component. Here, we assu %: in box 1, theB._”Ch phasg Is preferentially fa_vorable for
that the fluid is incompressible and the system is isotherma:&< h/2 and theA-rich phase is favored foy=h/2; in box 2,

e . e situation is reversed. For the coupling potential inside
F;Ser these conditions, Eqgl) and (2) can be written as each patchimarked as dashed boxes on Fig, We choose

the following simple formg23]. In the A patches,
pay(0)+p(GV)lG=—VP+ pAG+H, 1)

() +V(pU)=DAu,, )

where p=p°+p" is the total fluid densityd is the fluid \yhere the constarE gives the strength of the interaction and
velocity, 7 is the viscosity, andD is the diffusivity. The 4 is the value of the equilibrium order parameter for fhe
chemical potential 4, pressuré®, and the external forckl phase. In thé8 patches,

that act on the element of fluid are determined from the ex-

pression for the free energy of the system. We define the free )
energyF as V(¢,x,y)=C(d— ¢p)7, (6)

V(¢1X!y):C(¢_¢A)2= (5)

FZJ dr[¢(¢,p,T) +KI2(V $)?+V(,1)]. (3)  wheredgy is the value of the equilibrium order parameter for
the B phase. At the edges of the patches, these coupling
The termy(¢,p,T) describes the free energy of the homo- potentials decay exponentially,which leads to an overlap of
geneous system and includes the repulsive term between theth potentials in the intermediate regions of widt, zand
two components) p®pt, where\ is the strength of the re- 25, (see Fig. L1 In these regions, the potentials have the

pulsion, following forms:
V(¢p,a+ 8y ,y)e x-@ralr if x<a+ oy,
Vidy) V(g,a+2l—5;,y)e x—(ar2i=oyr if x>a+2l-6,
1X!y =

V(b x_,y)e X X-Impvig,x, y)e Xl if x_<x<x.,
V(gxy e P Y- v(gxy e Myl if y <y<y,,

wherex.=a+1=* 681, y~-=h/2* 6,. This overlap causes a smooth change of the order parameter
We have examined different types of potentials and foundetween the patches in the thermodynamic limit.

that the particular choice for the form of potential does not Outside the patterned domain, the fluid components un-

play a crucial role in the dynamics described below. In par-dergo phase separation at temperatures smaller than the criti-

ticular, similar results can be obtained with a potential cen<cal valueT<\/2. At the two-phase coexistence, the equilib-

tered in the middle of each patch and exhibiting an exponendum values of the order parameterds = ¢, for the A-rich

tial decay from this centdr24]. The most important feature phase andpg= — ¢ for the B-rich phase.

in the choice of the potential is the “checkerboard” design The chemical potential and pressure tensor are derived

and the assumption of some overlap between the patchefsom the free energy as
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ap(p,d) N(g,r) . 1 ... R R
pt=6F15¢= P + 7% —Kdydap, (1) Chi(Xt{fi})=— T_f[fi(xat)_f?q(x,t,{fi}))+hi(xrta{fi})].
(13
Pa,B: p05aB+ k(aa¢aﬁ¢_ 1/2(7y¢(9y¢5aﬁ_ d)(gya'yqsaaﬁ)a 1
® Co(R g = —[ai(xH-gF (% tigh]. (14
9
and
The predictor-corrector scheme has advantages over the stan-
dP(p,p,T) dard discretization of the evolution equations. First, the
Po=| —#(¢.p. T) V(1) +p p scheme is more stable and second, it allows us to write the
constraints for the equilibrium force term in the collision
IY(b,p,T) V(¢,r) operator in a rather straightforward, simple fofsee below.
té d + ap | ©) The conservation of number density for each component
and the conservation of momentum for the bulk are imposed
Finally, we define the force term in Edl) as H,= through the following equations:
—dV+f, andH,=—4,V. Here —f is the constant pres-
sure gradient needed to impose Poiseuille flow alongxthe Z fea=p, EI fe%e, = pu,,, E, gi=¢. (15

axis. (It should be noted that the extra force and pressure
tensor can be derived from the two-fluid model for the dy-
namics of a binary mixturg25].) In addition, in the lattice Boltzmann model, we impose the
At the channel’s boundariey €0 andy=h), we impose following constraintd22-28:
U=0 anddy¢=0. In the x direction, we impose periodic
boundary conditionsX=0 is the same point as=L,). edn A —
To find the numerical solution for Eq1) and (2), we 2.: 7 €ia8ip=Pagt pUals, (16)
adopt the lattice Boltzmann algorithm. In this method, the
physical variablegdensity, order parameter, and velogity
are described through sets of distribution functions that are EI hi=0, 2. higia=Ha, ZI hiei.eip=0, (17
discrete in space and time. The evolution of each distribution
function obeys the Boltzmann-like equation. Below, we de-
scribe this method in more detail. Z o %;,= ¢u,, E 05%i .8 5=T ugbupt duug.
I |

IIl. LATTICE BOLTZMANN ALGORITHM (18

With the above constraints, expansion of EGd)—(12),
up to second order init, leads to both the Navier-Stokes
equation[26] (where viscosity is defined gsr;/3) and the
following convection-diffusion equatiofwhere the diffusion
coefficient isD =T"7y):

To model the binary fluid, we define two distribution
functionsf;(X) andg;(X) on each lattice sit&. We use the
nine-velocity model with velocity vectorss;=(%1,0),
(0,£1),(x1,£1),(0,0. Physical variables are defined as

pZEi fiv puazzi: fieiai ¢):§I: gi- (10)

¢
;(ﬁapaﬁ_ HB)} -
(19

(9t( ¢)+Va¢ua= TgFAM¢_ ’TgO')ﬁ

We use the improvedpredictor-correctgr scheme[26] to
describe the evolution of the distribution functions during a

. . ) The additional ternflast term on the right hand side of the
time stepAt. The evolution equations are m 9

above equationis common to these lattice Boltzmann
f(X+EALEHAD —f(%,1) schemeg [22]), but it is small compared to the other terms.

' e n The equilibrium distribution functions and equilibrium
At . R . forcing term can be written as a polynomial expansions to
:?[Cfi(xvt’{fi})+Cfi(X+eiAt’t+Atv{fi D1 (D satisfy all constraint$15)—(18),

and fieq: AS+ BSuaeia+ CSU2+ DSuauBeiaeiﬁ+ Gsaﬁeiaeiﬁa
gi(>—()+ éiAt,t+ At) — g,(i,t) gieq: LS"F Ksuaeia+JSU2+ quauﬁeiaew ,
At
=7[Cgi(i,t,{fi})+Cgi()?+éiAt,t+At,{gi*})], (12 hi=TsH.ei,, (20

_ o _ Wheres= &2¢{0,1,2 for the different absolute values of the
where f and gi" are first order approximations t&(X  velocities and the coefficients are
+§&At,t+At) and g;(X+€At,t+At), respectively. The
collision operators are A,=(po—kdV29)I8, A;=2A,, Ay=p—12A,,
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B,=p/12, B;=4B,, By=0, assuming that the main term in the chemical potential for this
process is the coupling terpa~2C(¢— ¢;). Here, we take
C,=—pl16, C,=-—pl8, Cy=—3pl4, the width of the patctn/2 to estimate the characteristic size.
In the presence of the imposed flow, each component is
D,=p/8, D;=pl2, Dy=0, pushed into energetically unfavorakler nonwettablg do-

mains. The system tries to minimize its free energy by hav-
k 2 2 ing the A stream flow across the channel to thgatch and
G2XX:E[(‘9X¢) — ()], the B stream traverse the channel to B@atch(see Fig. 1
As a consequence of this energy-minimizing motion, the two
k components are driven to flow into each other and thereby
Gaxy=Gayx=g (9xpdyd),  Gayy=~Goaxx, undergo mixing. It is this effective coupling of thermody-
namics and dynamics that locally alters the phase behavior of
— — — - the fluid. Examples of this behavior are shown in Fig. 2.
Cra=4Caxe: Cryy=4Gzy, Guy= Cryx= 4Gz, The mixing of the fluids occurs in broad regions between
L,=Tu/8, L;=2L,, Ly=¢—12,, the patches, as can be seen in Figs) and 2b), where the
white zones correspond to tiephase, the dark gray places
J,=— 16, — I8, Jo=—3¢/4, mark theB phase, and the light gray areas correspond to the
mixed phase. The actual values of the order parameter are
Q,=¢/8, Q;=¢/2, Qu=0, shown in plotgc) and(d). The black arrows in Figs.(d) and
2(b) mark the direction and magnitude of the fluid velocity;
T,=1/12, T,=4T,, T,=0. the size of the arrows is proportional to the absolute value of
the velocity.
The images in Figs.(@) and Zb) reveal how flow couples
to thermodynamics to produce the mixed phase. At the left
The simulations described above were carried out in twedge of box 1, preferential wetting interactions drive each
dimensions on a lattice that is 3512 sites in size. The component to cross the channel and thereby mix in the center
initial conditions for the order parameter distribution were of the box. At the right hand side of box 1, the interactions
chosen so as to provide a two-stream flow whereAtiliid ~ have switched the positions of tiheand B stream. At this
flows through the “top” part of the channeyh/2) and the  point, the interactions imposed by box 2 have a critical ef-
B fluid flows through the “bottom” part of the channey( fect. As the fluids approach this neighboring box, the liquids
<h/2). In the absence of the patterned substrate, the velocit§re once more confronted with energetically unfavorable do-
profile is defined by the external pressure gradieffit,; we mains. Consequently, some of the fluid flows away from the
obtained the steady flow profile that exactly coincides withboundary and back into box 1, thus promoting mixing. The
the analytical solutioru,=(1/27)f,y(h—y) andu,=0. In latter behavior contribute§ to large areas of Iight gray be-
all the simulations described below, we “switch on” the in- tween boxes 1 and @ee Fig. 2 The flow in thex direction
teraction inside boxegl) and (2) when a steady-state Poi- transports the fluid from box 1 to box 2, including the liquid
seuille flow is achieved. Periodic boundary conditions arghat was mixed in box 1. At the same time, arrows at the top
imposed at the two ends of the channel; however, by havingnd bottom at the left edge of box 2 indicate that each com-
such a |0ng channel after the patterned region, the order p@onent is again driven across the channel to reach the respec-
rameter distribution and velocity profiles are very similar attive wettable domains. The motion provides another oppor-
both the beginning and end of the channel and no additiondHnity for mixing the fluids and contributes to enhancing the
perturbations are introduced as the fluid flows into the boxesize of the¢~0 region in box 2.
[27]. In addition to visualizing the state of the system from the
If we equate the simulation parameters to typical experi@bove figures, we can quantify the degree of mixing inside
mental values, we can obtain a feel for the time and lengtfihe channel by defining the “region of mixindR at the each
scales that are modeled by our system. In particular, wéite along the channel. This parameter is given by
make the following identificationsp=10°> kgm 3, »=3
X102 kgm 1s7!, and pressurepo=10° Nm 2. This -S|
then gives a time step akt=5/p,~3x10 7 s, a lattice ROX)=2 1,
spacing ofAx=t(py/p)Y?>~3x10 ¢ m and channel width
h~10"* m. The fluid velocity in the channel isi;  where we sum the number of lattice sifeslong they direc-
~0.3 ms?! and the Reynolds number is Reigh(p/7) tion in which the liquid is defines as “mixed.” We define the
~10. Thus, we are in the range of interest for microfluidics.condition for being mixed agip| < ¢y, Whereon,i, is the
In the presence of the patterned substrate and absence maximum order parameter value that we associate with the
the imposed flow {,=0), the equilibrium order parameter mixed state. In all the plots dR described below, we took
distribution inside each box mimics the design in the sub-¢,x=0.2¢.
strate. The characteristic time that is needed to reach the The region of mixing for three different velocities at
steady state can be roughly estimated,ash?/(8CD) from  steady state is shown in Fig. 3; curves 1 and 2 describe the
a dimensional analysis of the convection-diffusion equationcases shown in Figs(& and Zb), respectively, while curve

IV. RESULTS AND DISCUSSION

(21
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FIG. 2. Simulation results showing the distribution of the order parameter in the system at steady state; the length of ealch box is
=32 (here and in the following figure captions, all lengths are dimensionless and expressed in units of latlicElsiteparameters are
A=1.1,k=0.01,T=0.5,D=0.3, »=0.1. Parameters for the interaction potential @re0.04;r=7; §;=4; 6,=5. The external pressure
gradient isf,=4X 1075 [in (@) and(c) andf,=2X 1075 in (b) and(d)]. The different shading corresponds to the different values of order
parameter ina) and(b) (the A phase is dark gray, th® phase is whitg The absolute values of the order parameter is further displayed in
(c) and(d). In (a) and(b) arrows mark the direction and magnitude of the velocity field: the size of the arrow is proportional to the magnitude
of the velocity.

3 corresponds to the case with the lowest velocity ( strate, resulting in only small distortions of the order param-
=10"%). The best mixing occurs in the second box for theeter distribution.

highest of the three velocitie&urve 1. As compared to To obtain insight into the dynamic behavior of the sys-
curve 1, decreasing the imposed pressure gradéent thus tems in Fig. 3, we calculate the average value of the order
the velocity by a factor of 2(curve 2 results in better mix- Parameter as a function of time inside each box. The average
ing in the first box and lower mixing in the second box. We Order parameteM; is given by

note that in curve 2, the degree of mixing between boxes 1

and 2 is relatively the same. If we keep decreasing the ve- 2 | b/ o
locity, thermodynamics begins to win and the order param- M. =

eter distribution is mainly defined by the static interaction of :
the fluid with patches. The dynamics do however lead to a
short area of mixing at the beginning of each ourve 3.  where the index takes on the value of 1 or 2, indicating the
It is important to note that increasing the velocity beyond theappropriate box, and the summation is made over the all
value for case 1f(;=4X 10 °) also leads to poor mixing. lattice sites inside that box. Herh,is the width of the box
For very high velocities, the fluid hardly “feels” the sub- andl is the length. Figure 4 shows such plots for the cases

— @2
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10

R (region of mixing)

R (region of mixing)

a a+] a+2l
x (distance along the patches)

x ( distance along the box 1)

FIG. 3. Region of mixing along the boxes for the different ve-
locities at the steady statéa) f,=4X 105 (b) fp:2><10‘5; (¢
fp=10’5. All other parameters are the same as in Fig. 2

FIG. 5. Region of mixing in the first box for the long boxkes
=200; (1) D=0.6, »=0.1, f,=2x10 % (2) D=0.3, »=0.1, f,,
=2x107° (3) D=0.15, f,=2x 107> (4) D=0.3, »=0.1, f,
=10"° (5) D=0.3,7=0.2,f,=2x 10" °. All other parameters are
corresponding to curves 1 and 2 in Fig. 3; the solid linesthe same as in Fig. 2.
mark the behavior in box 1 and the dashed lines indicate the
behavior in box 2. There are a number of interesting obser-
vations that emerge from the plots. In particular, the averag
order parameter in the first bok] ;, has a minimum at early
times; this time is the same for all the values of the impose
pressure gradieni.e., velocities. This minimum is deeper
for the lower velocity. The steady-state value Wf; is
slightly lower for the higher velocity. The values of the av-

ex direction transports already mixed fluid from box 1 into
e second box. The latter phenomenon contributes to the
éﬂgher state of mixing in box 2.

The above observations highlight the utility of the check-
erboard pattern in promoting the mixing of the fluids. Forc-
ing the fluids to intersect across one set of bounddeesn
erage order parameter in the second hdx decrease bo_x D can pr.omote mixing, but the overall degree .O.f mixing

. . is improved if the fluids are confronted by an additional set
smoothly with the time. : . L . .
of boundaries, which once again drive the fluids to flow into

For both cases described above, the steady-state value ggch other. Another important architectural feature that will

;crr:etr?g/eﬁrf\s’%ebg;di\; pirargm?r:d'?cgmgr;nérsaf:rczggrzzxgpa}ﬂfluence the fluid properties is the length of each box. In the
2 1/

above simulations, the length of each box was equal to the

mixing in the gecond bo.x..Th|s obsgrvatlon Is consistent WIthwidth of channel. We expect that thermodynamic effects will
the larger regions of mixing seen in box(Big. 3. As we

noted above, in box 2 not only do the fluids cross the chann (ilominate at the ends of long boxes. We now define a corre-
’ y Yation lengthl.,,, as the length over which the thermody-

to reach the respective wettable domains but also, the flow "Ramic distribution is distorted by the imposed flow field. In
terms of the simulation, we estimate this length from the
L T ‘ plots of R versusX. For example in Fig. 4, we takeg,,, as
a,box 1 the length beyond the large peak and at the point wikere
—— 3,box2 first reaches the apparent small saturated value. From a
&—5b,box 1 . . . . .
&—b, box 2 simple dimensional analysis, one can argue that this length
i should be proportional to the fluid velocity, multiplied by
some characteristic timtg. It is reasonable to assume thgt
is inversely proportional to the diffusivit® even in the pres-
ence of an imposed floy28]. Thus, we hypothesize that
l.orr SCales approximately withy/D. For the characteristic
velocity ug, we can take the velocity in the middle of the
channel caused by the imposed f|0w=(l/877)fph2 before
—————————————————————— the boxes. As we show below, the simulations support this
observation.
To determine the values df,,, for our system, we per-
form simulations using very long boxes. In particular, we
FIG. 4. Average order parameter vs time in the first hox  takel=200. In this way, we ensure thiis greater thamc,,
(solid curve$ and in the second bok, (dashed curvesfor the  and the end of each box displays the order parameter distri-
different velocities at the steady stat@) f,=4x10>; (b) f, bution that corresponds to the thermodynamic solution. Fig-
=2X10°. All other parameters are the same as in Fig. 2. ure 5 shows the region of mixing at steady state inside the

0.8

0.6

M (average order parameter)

04 L 1
0 5000  t(time) 10000 15000

031502-6



USING PATTERNED SUBSTRATES TO PROMT. . . PHYSICAL REVIEW E 65 031502

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

— 1=0.1
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5 _]“
,fl-
I
a atl a+2l a atl at+2]
x (distance along the patches) x (distance along the patches)

FIG. 6. Region of mixing along the boxes for the different dif- FIG. 7. Region of mixing along the boxes for the different vis-
fusion coefficients as marked in the figure. All other parameters areosities: (1) f,=2x107° 7=0.1 (2) f,=4X10"°% »=0.2. All
the same as in Fig. 2 other parameters are the same as in Fig. 2.

first long box (=200) for various fluid diffusivities and im-

posed velocities words, the order parameter distribution is closer to the ther-

; e , modynamic solution, except at the regions near the begin-
Increasing the diffusivityD by a factor of 2(curve 1, Fig. ningyof each box. Convergely for srr?all values Df the g

5) relative to reference cadeurve 2 leads to an approxi- . g ;
. system is more sensitive to the effects of the imposed flow
mate two-fold decrease in,,,, as well as a decrease in the field

(r:r;%xr:m:sn}nvg:geogel?r. Ca?amrﬁgtr:rb Es?r?lfl:(taigzesa?o& %rlg)(tjaine We use Fig. 7 to demonstrate an important aspect of vary-
g . para . . |g|g the viscosity of the solution. In particular, similar degrees
by decreasing the velocity in the middle of the channel, ei-

ther by halving the external pressure gradiénirve § or of mixing can be attained for fluids with different viscosities
doubling the fluid viscosity(curve §. On the other hand, by appropriately modifying the imposed pressure gradient,

4 e o Specifically, we consider the cases##0.1 and 0.2. If we
decreas_mg the diffusivitip by a factor of 2 leads roughly to agply a tWZ—foId greater pressure ngcTient t0 the0 2 case
a d|2 ubI|r|19 dOﬂCOIUH(]CUNe 3|' tion lenat f icul we obtain the same velocity profile before the boxes as in
nowledge of the corretation 1eng GO” or a particuiar e 7=0.1 case. Consequently, the order parameter distribu-
syste'm' tells us the length beyond Wh.'Ch there is e_ssenfuallgon and the region of mixing is similar for both situations.
no mixing within a box. The information also provides in- Thus, increases in the imposed pressure can be used to tailor
sight into the optimal placement of the secofwt subse-

guen} boxes. In particular, choosing the length of box 1the degree of mixing for high viscosity fluids.
equal tol.,,, is not the best choice for optimal mixing be-
cause the region of mixing is maximal in the middle of that V. CONCLUSIONS
length and decays at the endlgf,,. One of the best cases
for optimal mixing in both boxes is to take the length of each  Through the above simulations, we examined the effect of
box|~I.q,/2. This is the situation captured in Figl2. The  an imposed flow field on a binary mixture that lies above a
length of each box in Fig.(@) is | ~|.,./4 since the imposed patterned substrate and is confined in a microchannel. The
pressure gradient is two times higher than in Fig)2Thus, results reveal that the coupling of hydrodynamics and ther-
based on an estimation bf,,,, it is possible to choose such modynamics can be exploited to control the phase behavior
box lengths that will provide effective mixing for the specific of the fluids. Specifically, the immiscible components can be
fluids and for the chosen range of velocities. driven to form a homogeneous mixture in a broad region of
Having determined the optimal geometry for the underly-the confining channel. We showed that a checkerboard pat-
ing substrate, we now investigate how the fluid characteristern of wettable and nonwettable domains was an effective
tics affect the degree of mixing on a fixed surface pattern. Irsurface design for promoting the mixing. By examining the
particular, we again take the length of each box to be equal tlow patterns and order parameter distribution in a given
the width of the channel and determine how variations in the'box,” we determined the optimal box length for maximiz-
diffusivity D and viscosityz affect the region of mixing in ing the degree of mixing within the system. In particular, a
the system. Figure 6 shows plots Rfalong the patches for box length ofl=~I.,,/2 proved to be highly effective. We
three values ob at a fixed velocity. The plots reveal that the showed thal.,,,, the length scale over which the thermo-
fluid with the smallest value oD provides the broadest re- dynamic distribution is distorted by the imposed flow field, is
gion of extensive mixing. Recall th&t is a coefficient in the dependent on the imposed velocity and the diffusivity of the
convection-diffusion equation and a large valueDoimplies ~ material. Based on an estimationlgf,,, it is possible to fix
that the system is dominated by thermodynamics. In othea box length that will optimize the performance of the “mix-
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ing station” for the specific fluids and range of velocities the systems. In the latter case, the system can be considered
under consideration. as roughly two dimensional. In three dimensidB@®), the
For a fixed box length, we examined the effect of modi-interplay between wetting and hydrodynamic boundary con-
fying the diffusivity and viscosity of the fluid. The findings ditions can potentially lead to interesting additional physics.
indicate how the materials properties affect the extent ofNork is currently in progress to investigate the behavior of
mixing and how the imposed flow field can be altered tothe system in 3D. Meanwhile our findings indicate that pat-
manipulate the behavior of the fluid. terned substrates can provide an effective, nonmechanical
The above calculations were performed in two dimen-means of mixing solutions and open the possibility of creat-
sions. Typically, the widths of the microchannels in micro-ing spatially localized reaction chambers within microfluidic

fluidic devices are five to ten times greater than the height oflevices.
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