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Using patterned substrates to promote mixing in microchannels
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Using a lattice Boltzmann model for fluid dynamics, we investigate the flow and phase behavior of a binary
fluid moving over a patterned substrate within a microchannel. The binary fluid consists of two immiscible
components,A and B, and this liquid is subjected to a Poiseuille flow. The substrate is decorated with a
checkerboard pattern ofA- and B-like patches. Through a coupling of hydrodynamics and thermodynamics,
each component is driven to flow from the nonwettable domains to wettable regions. As a consequence, theA
and B fluids undergo extensive mixing within the microchannels. We investigate how the degree of mixing
depends on the size of the patches, the velocity of the imposed flow field, and the characteristics of the fluid.
The results provide guidelines for creating localized ‘‘mixing stations’’ within microfluidic devices. The find-
ings also reveal how a combination of imposed flow fields and surface patterning can be exploited to control
the phase behavior of complex fluids.
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I. INTRODUCTION

Microfluidics involves the transport of minute quantitie
of liquids in networked channels that are 10–100mm wide.
Microfluidic systems lie at the heart of the lab-on-a-chip co
cept, which has the potential to shrink a room full of analy
cal instruments onto a compact, hand-held device. In orde
facilitate the fabrication of microfluidic devices, it is impo
tant to develop predictive models that reveal the thermo
namic behavior and flow patterns of complex fluids
micron-sized channels. Of particular importance is us
these models to design effective methods for mixing mu
component fluids in the narrow chambers@1#. Extensive mix-
ing between components in microchannels is difficult b
cause the small dimensions of the system constrain the
to move in a laminar fashion~i.e., low Reynolds numbe
flow!. In the absence of turbulent flow, there is little mixin
between the various confined fluids and thus, reagents
sample can only undergo limited interactions.

Numerous studies on thin films of binary fluids ha
shown that the phase behavior and morphology of the m
tures are significantly affected by the wetting properties
the underlying substrate~see, for example, Refs.@2–5#!. Fur-
thermore, a patterned surface with preferential wetting in
actions can give rise to a rich variety of phenomena.
example, for thin films of binary fluids, the system can
driven to mimic the design in the underlying substrate@6,7#.
In the studies cited above, the films are stationary, i.e., th
is no imposed flow in the system. One expects that an ex
nal flow field would substantially modify the properties
patterned films. In terms of microfluidic applications, it m
be possible to couple the effects of the substrate and
imposed flow to control the behavior of the mixture. In th
paper, we use a computational model to analyze how
phase behavior of binary fluids under imposed flow is
fected by chemically distinct patterns in the underlying s
face. Through these studies, we show that patterned
strates can be exploited to drive extensive mixing of bin
fluids flowing in microchannels.
1063-651X/2002/65~3!/031502~8!/$20.00 65 0315
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One of the challenges inherent in modeling such a co
plex system is incorporating not only the interactions b
tween the components but also, the interactions between
fluid and the substrate, i.e., wettability and surface tens
which play a dominant role in the behavior of confined flui
@8–15#. In addition, the model must describe the complica
micron-scale dynamics that arise from the above inter
tions. To capture these different features, we adopt the la
Boltzmann approach, a simulation technique for fluid d
namics. This model captures the thermodynamic behavio
multiphase fluids@16# and can predict flow patterns i
micron-sized pores@17#. Below, we introduce a method fo
including the wetting interactions between the fluids and
underlying substrate. Thus, we can develop correlati
among surface wettability, phase behavior and flow patte
in the system.

II. THE MODEL

We consider two immiscible fluids@18#, A andB, moving
through the microchannel shown in Fig. 1, which represe
a top-down view of the system. A Poiseuille flow is impos
on the fluids by applying a constant pressure gradient al
the x direction. The ‘‘floor’’ of the channel is patterned wit
chemically distinct patches. In particular, aB patch ~which

FIG. 1. Schematic drawing of the channel filled with anA/B
binary fluid. Black represents theA-rich phase and white indicate
the B-rich phase. Boxes 1 and 2 mark the pairs of chemically d
tinct patches. Letters within each box indicate the chemical na
(A- or B-like! of the patch.
©2002 The American Physical Society02-1
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preferentially attracts theB component! is introduced within
theA stream and anA patch~which preferentially attracts the
A component! is placed within theB stream. The contiguou
A and B patches constitute the region marked ‘‘box 1
which spans the width of the channel~see Fig. 1!. In the
adjacent ‘‘box 2,’’ the arrangement of the patches is revers
so that entire pattern resembles a 232 checkerboard. Experi
mentally such chemically distinct regions can be crea
through microcontact printing@19# or a combination of pho-
tolithography and self-assembled monolayer chemistry@20#.

The dynamics of the binary fluid inside the channel
Fig. 1 are described by a Navier-Stokes equation@Eq. ~1!#
and a convection-diffusion equation@Eq. ~2!# for the order
parameter, which characterizes the local composition of
binary fluid, f5r0(r )2r1(r ), wherer0(r ) and r1(r ) are
the number densities of each component. Here, we ass
that the fluid is incompressible and the system is isotherm
under these conditions, Eqs.~1! and ~2! can be written as
@21#

r] t~uW !1r~uW“ !uW 52“P1hDuW 1HW , ~1!

] t~f!1“~fuW !5DDmf , ~2!

where r5r01r1 is the total fluid density,uW is the fluid
velocity, h is the viscosity, andD is the diffusivity. The
chemical potentialmf , pressureP, and the external forceHW
that act on the element of fluid are determined from the
pression for the free energy of the system. We define the
energyF as

F5E dr @c~f,r,T!1k/2~“f!21V~f,r !#. ~3!

The termc(f,r,T) describes the free energy of the hom
geneous system and includes the repulsive term betwee
two components,lr0r1, wherel is the strength of the re
pulsion,
n
o

ar
en
e
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c~f,r,T!5
lr

4 S 12
f2

r2 D 2Tr1
T

2
~r1f!lnS r1f

2 D
1

T

2
~r2f!lnS r2f

2 D . ~4!

The second term in Eq.~3! describes the energy of the inte
face between the two phases; the coefficientk is a measure of
the surface tension. The last term in Eq.~3! is an interaction
potential that introduces the coupling between the order
rameter and the chemically distinct patches. It is through
term that we model the preferential wetting interactions.

The wetting interactions take the following form~see Fig.
1!: in box 1, theB-rich phase is preferentially favorable fo
y,h/2 and theA-rich phase is favored fory.h/2; in box 2,
the situation is reversed. For the coupling potential ins
each patch~marked as dashed boxes on Fig. 1!, we choose
the following simple forms@23#. In theA patches,

V~f,x,y!5C~f2fA!2, ~5!

where the constantC gives the strength of the interaction an
fA is the value of the equilibrium order parameter for theA
phase. In theB patches,

V~f,x,y!5C~f2fB!2, ~6!

wherefB is the value of the equilibrium order parameter f
the B phase. At the edges of the patches, these coup
potentials decay exponentially,which leads to an overlap
both potentials in the intermediate regions of width 2d1 and
2d2 ~see Fig. 1!. In these regions, the potentials have t
following forms:
V~f,x,y!55
V~f,a1d1 ,y!e2ux2(a1d1)u/r if x,a1d1 ,

V~f,a12l 2d1 ,y!e2ux2(a12l 2d1)u/r if x.a12l 2d1 ,

V~f,x2 ,y!e2ux2x2u/r1V~f,x1 ,y!e2ux2x1u/r if x2,x,x1 ,

V~f,x,y2!e2uy2y2u/r1V~f,x,y1!e2uy2y1u/r if y2,y,y1 ,
eter

un-
criti-
b-

ived
wherex65a1 l 6d1 , y65h/26d2.
We have examined different types of potentials and fou

that the particular choice for the form of potential does n
play a crucial role in the dynamics described below. In p
ticular, similar results can be obtained with a potential c
tered in the middle of each patch and exhibiting an expon
tial decay from this center@24#. The most important feature
in the choice of the potential is the ‘‘checkerboard’’ desi
and the assumption of some overlap between the patc
d
t
-
-

n-

es.

This overlap causes a smooth change of the order param
between the patches in the thermodynamic limit.

Outside the patterned domain, the fluid components
dergo phase separation at temperatures smaller than the
cal valueT,l/2. At the two-phase coexistence, the equili
rium values of the order parameter isfA5f0 for the A-rich
phase andfB52f0 for the B-rich phase.

The chemical potential and pressure tensor are der
from the free energy as
2-2



-
e
ur
y

he
y
a
tio
e

n

a

stan-
he
the
n

ent
sed

he

s

e
n
s.

to

e

USING PATTERNED SUBSTRATES TO PROMOTE . . . PHYSICAL REVIEW E 65 031502
mf5dF/df5
]c~r,f!

]f
1

]V~f,r !

]f
2k]a]af, ~7!

Pab5p0dab1k~]af]bf21/2]gf]gfdab2f]g]gfdab!,

~8!

and

p05F2c~f,r,T!2V~f,r !1r
]c~f,r,T!

]r

1f
]c~f,r,T!

]f
1f

]V~f,r !

]f G . ~9!

Finally, we define the force term in Eq.~1! as Hx5
2]xV1 f p and Hy52]yV. Here2 f p is the constant pres
sure gradient needed to impose Poiseuille flow along thx
axis. ~It should be noted that the extra force and press
tensor can be derived from the two-fluid model for the d
namics of a binary mixture@25#.!

At the channel’s boundaries (y50 andy5h), we impose
uW 50 and ]yf50. In the x direction, we impose periodic
boundary conditions (x50 is the same point asx5Lx).

To find the numerical solution for Eq.~1! and ~2!, we
adopt the lattice Boltzmann algorithm. In this method, t
physical variables~density, order parameter, and velocit!
are described through sets of distribution functions that
discrete in space and time. The evolution of each distribu
function obeys the Boltzmann-like equation. Below, we d
scribe this method in more detail.

III. LATTICE BOLTZMANN ALGORITHM

To model the binary fluid, we define two distributio
functions f i(xW ) andgi(xW ) on each lattice sitexW . We use the
nine-velocity model with velocity vectorseW i5(61,0),
~0,61!,~61,61!,~0,0!. Physical variables are defined as

r5(
i

f i , rua5(
i

f ieia , f5(
i

gi . ~10!

We use the improved~predictor-corrector! scheme@26# to
describe the evolution of the distribution functions during
time stepDt. The evolution equations are

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !

5
Dt

2
@Cf i~xW ,t,$ f i%!1Cf i~xW1eW iDt,t1Dt,$ f i* %!# ~11!

and

gi~xW1eW iDt,t1Dt !2gi~xW ,t !

5
Dt

2
@Cgi~xW ,t,$ f i%!1Cgi~xW1eW iDt,t1Dt,$gi* %!#, ~12!

where f i* and gi* are first order approximations tof i(xW
1eW iDt,t1Dt) and gi(xW1eW iDt,t1Dt), respectively. The
collision operators are
03150
e
-
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Cf i~xW ,t,$ f i%!52
1

t f
@ f i~xW ,t !2 f i

eq~xW ,t,$ f i%!!1hi~xW ,t,$ f i%!],

~13!

Cgi~xW ,t,$gi%!52
1

tg
@gi~xW ,t !2gi

eq~xW ,t,$gi%!#. ~14!

The predictor-corrector scheme has advantages over the
dard discretization of the evolution equations. First, t
scheme is more stable and second, it allows us to write
constraints for the equilibrium force term in the collisio
operator in a rather straightforward, simple form~see below!.

The conservation of number density for each compon
and the conservation of momentum for the bulk are impo
through the following equations:

(
i

f i
eq5r, (

i
f i

eqeia5rua , (
i

gi
eq5f. ~15!

In addition, in the lattice Boltzmann model, we impose t
following constraints@22–26#:

(
i

f i
eqeiaeib5Pab1ruaub , ~16!

(
i

hi50, (
i

hieia5Ha , (
i

hieiaeib50, ~17!

(
i

gi
eqeia5fua , (

i
gi

eqeiaeib5Gmfdab1fuaub .

~18!

With the above constraints, expansion of Eqs.~11!–~12!,
up to second order inDt, leads to both the Navier-Stoke
equation@26# ~where viscosity is defined asrt f /3) and the
following convection-diffusion equation~where the diffusion
coefficient isD5Gtg):

] t~f!1“afua5tgGDmf2tg]bFfr ~]aPab2Hb!G .
~19!

The additional term~last term on the right hand side of th
above equation! is common to these lattice Boltzman
schemes~ @22#!, but it is small compared to the other term

The equilibrium distribution functions and equilibrium
forcing term can be written as a polynomial expansions
satisfy all constraints~15!–~18!,

f i
eq5As1Bsuaeia1Csu

21Dsuaubeiaeib1Gsabeiaeib ,

gi
eq5Ls1Ksuaeia1Jsu

21Qsuaubeiaeib ,

hi5TsHaeia , ~20!

wheres5eW i
2P$0,1,2% for the different absolute values of th

velocities and the coefficients are

A25~p02kf“

2f!/8, A152A2 , A05r212A2 ,
2-3
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B25r/12, B154B2 , B050,

C252r/16, C152r/8, C0523r/4,

D25r/8, D15r/2, D050,

G2xx5
k

16
@~]xf!22~]yf!2#,

G2xy5G2yx5
k

8
~]xf]yf!, G2yy52G2xx ,

G1xx54G2xx , G1yy54G2yy , G1xy5G1yx54G2xy ,

L25Gm/8, L152L2 , L05f212L2 ,

J252f/16, 2f/8, J0523f/4,

Q25f/8, Q15f/2, Q050,

T251/12, T154T2 , T050.

IV. RESULTS AND DISCUSSION

The simulations described above were carried out in
dimensions on a lattice that is 323612 sites in size. The
initial conditions for the order parameter distribution we
chosen so as to provide a two-stream flow where theA fluid
flows through the ‘‘top’’ part of the channel (y.h/2) and the
B fluid flows through the ‘‘bottom’’ part of the channel (y
,h/2). In the absence of the patterned substrate, the velo
profile is defined by the external pressure gradient2 f p ; we
obtained the steady flow profile that exactly coincides w
the analytical solutionux5(1/2h) f py(h2y) and uy50. In
all the simulations described below, we ‘‘switch on’’ the in
teraction inside boxes~1! and ~2! when a steady-state Po
seuille flow is achieved. Periodic boundary conditions
imposed at the two ends of the channel; however, by hav
such a long channel after the patterned region, the order
rameter distribution and velocity profiles are very similar
both the beginning and end of the channel and no additio
perturbations are introduced as the fluid flows into the bo
@27#.

If we equate the simulation parameters to typical exp
mental values, we can obtain a feel for the time and len
scales that are modeled by our system. In particular,
make the following identifications:r5103 kg m23, h53
31023 kg m21 s21, and pressurep05105 N m22. This
then gives a time step ofDt5h/p0'331027 s, a lattice
spacing ofDx5t(p0 /r)1/2'331026 m and channel width
h'1024 m. The fluid velocity in the channel isu0
'0.3 m s21 and the Reynolds number is Re5u0h(r/h)
'10. Thus, we are in the range of interest for microfluidi

In the presence of the patterned substrate and absen
the imposed flow (f p50), the equilibrium order paramete
distribution inside each box mimics the design in the s
strate. The characteristic time that is needed to reach
steady state can be roughly estimated ast0'h2/(8CD) from
a dimensional analysis of the convection-diffusion equati
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assuming that the main term in the chemical potential for t
process is the coupling termm'2C(f2f0). Here, we take
the width of the patchh/2 to estimate the characteristic siz

In the presence of the imposed flow, each componen
pushed into energetically unfavorable~or nonwettable! do-
mains. The system tries to minimize its free energy by h
ing theA stream flow across the channel to theA patch and
theB stream traverse the channel to theB patch~see Fig. 1!.
As a consequence of this energy-minimizing motion, the t
components are driven to flow into each other and ther
undergo mixing. It is this effective coupling of thermody
namics and dynamics that locally alters the phase behavio
the fluid. Examples of this behavior are shown in Fig. 2.

The mixing of the fluids occurs in broad regions betwe
the patches, as can be seen in Figs. 2~a! and 2~b!, where the
white zones correspond to theA phase, the dark gray place
mark theB phase, and the light gray areas correspond to
mixed phase. The actual values of the order parameter
shown in plots~c! and~d!. The black arrows in Figs. 2~a! and
2~b! mark the direction and magnitude of the fluid velocit
the size of the arrows is proportional to the absolute value
the velocity.

The images in Figs. 2~a! and 2~b! reveal how flow couples
to thermodynamics to produce the mixed phase. At the
edge of box 1, preferential wetting interactions drive ea
component to cross the channel and thereby mix in the ce
of the box. At the right hand side of box 1, the interactio
have switched the positions of theA and B stream. At this
point, the interactions imposed by box 2 have a critical
fect. As the fluids approach this neighboring box, the liqu
are once more confronted with energetically unfavorable
mains. Consequently, some of the fluid flows away from
boundary and back into box 1, thus promoting mixing. T
latter behavior contributes to large areas of light gray
tween boxes 1 and 2~see Fig. 2!. The flow in thex direction
transports the fluid from box 1 to box 2, including the liqu
that was mixed in box 1. At the same time, arrows at the
and bottom at the left edge of box 2 indicate that each co
ponent is again driven across the channel to reach the res
tive wettable domains. The motion provides another opp
tunity for mixing the fluids and contributes to enhancing t
size of thef'0 region in box 2.

In addition to visualizing the state of the system from t
above figures, we can quantify the degree of mixing ins
the channel by defining the ‘‘region of mixing’’R at the each
site along the channel. This parameter is given by

R~x!5( j , ~21!

where we sum the number of lattice sitesj along they direc-
tion in which the liquid is defines as ‘‘mixed.’’ We define th
condition for being mixed as:ufu,fmix , wherefmix is the
maximum order parameter value that we associate with
mixed state. In all the plots ofR described below, we took
fmix50.2f0.

The region of mixing for three different velocities a
steady state is shown in Fig. 3; curves 1 and 2 describe
cases shown in Figs. 2~a! and 2~b!, respectively, while curve
2-4
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FIG. 2. Simulation results showing the distribution of the order parameter in the system at steady state; the length of eachl
532 ~here and in the following figure captions, all lengths are dimensionless and expressed in units of lattice sites!. Fluid parameters are
l51.1, k50.01, T50.5, D50.3, h50.1. Parameters for the interaction potential areC50.04; r 57; d154; d255. The external pressure
gradient isf p5431025 @in ~a! and~c! and f p5231025 in ~b! and~d!#. The different shading corresponds to the different values of or
parameter in~a! and~b! ~the A phase is dark gray, theB phase is white!. The absolute values of the order parameter is further displaye
~c! and~d!. In ~a! and~b! arrows mark the direction and magnitude of the velocity field: the size of the arrow is proportional to the mag
of the velocity.
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3 corresponds to the case with the lowest velocityf p

51025). The best mixing occurs in the second box for t
highest of the three velocities~curve 1!. As compared to
curve 1, decreasing the imposed pressure gradient~and thus
the velocity! by a factor of 2~curve 2! results in better mix-
ing in the first box and lower mixing in the second box. W
note that in curve 2, the degree of mixing between boxe
and 2 is relatively the same. If we keep decreasing the
locity, thermodynamics begins to win and the order para
eter distribution is mainly defined by the static interaction
the fluid with patches. The dynamics do however lead t
short area of mixing at the beginning of each box~curve 3!.
It is important to note that increasing the velocity beyond
value for case 1 (f p5431025) also leads to poor mixing
For very high velocities, the fluid hardly ‘‘feels’’ the sub
03150
1
e-
-
f
a

e

strate, resulting in only small distortions of the order para
eter distribution.

To obtain insight into the dynamic behavior of the sy
tems in Fig. 3, we calculate the average value of the or
parameter as a function of time inside each box. The aver
order parameterMi is given by

Mi5
( uf/f0u

lh
, ~22!

where the indexi takes on the value of 1 or 2, indicating th
appropriate box, and the summation is made over the
lattice sites inside that box. Here,h is the width of the box
and l is the length. Figure 4 shows such plots for the ca
2-5
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corresponding to curves 1 and 2 in Fig. 3; the solid lin
mark the behavior in box 1 and the dashed lines indicate
behavior in box 2. There are a number of interesting ob
vations that emerge from the plots. In particular, the aver
order parameter in the first box,M1, has a minimum at early
times; this time is the same for all the values of the impo
pressure gradient~i.e., velocities!. This minimum is deeper
for the lower velocity. The steady-state value ofM1 is
slightly lower for the higher velocity. The values of the a
erage order parameter in the second boxM2 decrease
smoothly with the time.

For both cases described above, the steady-state valu
the average order parameter is lower in the second box
in the first box (M2,M1), indicating a greater degree o
mixing in the second box. This observation is consistent w
the larger regions of mixing seen in box 2~Fig. 3!. As we
noted above, in box 2 not only do the fluids cross the chan
to reach the respective wettable domains but also, the flo

FIG. 3. Region of mixing along the boxes for the different v
locities at the steady state:~a! f p5431025; ~b! f p5231025; ~c!
f p51025. All other parameters are the same as in Fig. 2

FIG. 4. Average order parameter vs time in the first boxM1

~solid curves! and in the second boxM2 ~dashed curves! for the
different velocities at the steady state:~a! f p5431025; ~b! f p

5231025. All other parameters are the same as in Fig. 2.
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thex direction transports already mixed fluid from box 1 in
the second box. The latter phenomenon contributes to
higher state of mixing in box 2.

The above observations highlight the utility of the chec
erboard pattern in promoting the mixing of the fluids. For
ing the fluids to intersect across one set of boundaries~as in
box 1! can promote mixing, but the overall degree of mixin
is improved if the fluids are confronted by an additional s
of boundaries, which once again drive the fluids to flow in
each other. Another important architectural feature that w
influence the fluid properties is the length of each box. In
above simulations, the length of each box was equal to
width of channel. We expect that thermodynamic effects w
dominate at the ends of long boxes. We now define a co
lation length l corr as the length over which the thermod
namic distribution is distorted by the imposed flow field.
terms of the simulation, we estimate this length from t
plots of R versusX. For example in Fig. 4, we takel corr as
the length beyond the large peak and at the point wherR
first reaches the apparent small saturated value. Fro
simple dimensional analysis, one can argue that this len
should be proportional to the fluid velocityu0 multiplied by
some characteristic timet0. It is reasonable to assume thatt0
is inversely proportional to the diffusivityD even in the pres-
ence of an imposed flow@28#. Thus, we hypothesize tha
l corr scales approximately withu0 /D. For the characteristic
velocity u0, we can take the velocity in the middle of th
channel caused by the imposed flowu05(1/8h) f ph2 before
the boxes. As we show below, the simulations support
observation.

To determine the values ofl corr for our system, we per-
form simulations using very long boxes. In particular, w
takel 5200. In this way, we ensure thatl is greater thanl corr
and the end of each box displays the order parameter di
bution that corresponds to the thermodynamic solution. F
ure 5 shows the region of mixing at steady state inside

FIG. 5. Region of mixing in the first box for the long boxesl
5200; ~1! D50.6, h50.1, f p5231025; ~2! D50.3, h50.1, f p

5231025; ~3! D50.15, f p5231025; ~4! D50.3, h50.1, f p

51025; ~5! D50.3,h50.2, f p5231025. All other parameters are
the same as in Fig. 2.
2-6
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first long box (l 5200) for various fluid diffusivities and im-
posed velocities.

Increasing the diffusivityD by a factor of 2~curve 1, Fig.
5! relative to reference case~curve 2! leads to an approxi-
mate two-fold decrease inl corr , as well as a decrease in th
maximum value ofR. Comparable decreases inl corr and
changes in the order parameter distribution can be obta
by decreasing the velocity in the middle of the channel,
ther by halving the external pressure gradient~curve 5! or
doubling the fluid viscosity~curve 6!. On the other hand
decreasing the diffusivityD by a factor of 2 leads roughly to
a doubling ofl corr ~curve 3!.

Knowledge of the correlation lengthl corr for a particular
system tells us the length beyond which there is essent
no mixing within a box. The information also provides in
sight into the optimal placement of the second~or subse-
quent! boxes. In particular, choosing the length of box
equal tol corr is not the best choice for optimal mixing be
cause the region of mixing is maximal in the middle of th
length and decays at the end ofl corr . One of the best case
for optimal mixing in both boxes is to take the length of ea
box l' l corr/2. This is the situation captured in Fig. 2~b!. The
length of each box in Fig. 2~a! is l' l corr/4 since the imposed
pressure gradient is two times higher than in Fig. 2~a!. Thus,
based on an estimation ofl corr , it is possible to choose suc
box lengths that will provide effective mixing for the specifi
fluids and for the chosen range of velocities.

Having determined the optimal geometry for the under
ing substrate, we now investigate how the fluid characte
tics affect the degree of mixing on a fixed surface pattern
particular, we again take the length of each box to be equa
the width of the channel and determine how variations in
diffusivity D and viscosityh affect the region of mixing in
the system. Figure 6 shows plots ofR along the patches fo
three values ofD at a fixed velocity. The plots reveal that th
fluid with the smallest value ofD provides the broadest re
gion of extensive mixing. Recall thatD is a coefficient in the
convection-diffusion equation and a large value ofD implies
that the system is dominated by thermodynamics. In ot

FIG. 6. Region of mixing along the boxes for the different d
fusion coefficients as marked in the figure. All other parameters
the same as in Fig. 2
03150
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t

-
s-
n
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e
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words, the order parameter distribution is closer to the th
modynamic solution, except at the regions near the be
ning of each box. Conversely, for small values ofD, the
system is more sensitive to the effects of the imposed fl
field.

We use Fig. 7 to demonstrate an important aspect of va
ing the viscosity of the solution. In particular, similar degre
of mixing can be attained for fluids with different viscositie
by appropriately modifying the imposed pressure gradie
Specifically, we consider the cases ofh50.1 and 0.2. If we
apply a two-fold greater pressure gradient to theh50.2 case,
we obtain the same velocity profile before the boxes as
the h50.1 case. Consequently, the order parameter distr
tion and the region of mixing is similar for both situation
Thus, increases in the imposed pressure can be used to
the degree of mixing for high viscosity fluids.

V. CONCLUSIONS

Through the above simulations, we examined the effec
an imposed flow field on a binary mixture that lies above
patterned substrate and is confined in a microchannel.
results reveal that the coupling of hydrodynamics and th
modynamics can be exploited to control the phase beha
of the fluids. Specifically, the immiscible components can
driven to form a homogeneous mixture in a broad region
the confining channel. We showed that a checkerboard
tern of wettable and nonwettable domains was an effec
surface design for promoting the mixing. By examining t
flow patterns and order parameter distribution in a giv
‘‘box,’’ we determined the optimal box length for maximiz
ing the degree of mixing within the system. In particular,
box length of l' l corr/2 proved to be highly effective. We
showed thatl corr , the length scale over which the therm
dynamic distribution is distorted by the imposed flow field,
dependent on the imposed velocity and the diffusivity of t
material. Based on an estimation ofl corr , it is possible to fix
a box length that will optimize the performance of the ‘‘mix

re
FIG. 7. Region of mixing along the boxes for the different vi

cosities: ~1! f p5231025; h50.1 ~2! f p5431025; h50.2. All
other parameters are the same as in Fig. 2.
2-7
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ing station’’ for the specific fluids and range of velocitie
under consideration.

For a fixed box length, we examined the effect of mo
fying the diffusivity and viscosity of the fluid. The finding
indicate how the materials properties affect the extent
mixing and how the imposed flow field can be altered
manipulate the behavior of the fluid.

The above calculations were performed in two dime
sions. Typically, the widths of the microchannels in micr
fluidic devices are five to ten times greater than the heigh
re

nc

03150
-

f

-

f

the systems. In the latter case, the system can be consid
as roughly two dimensional. In three dimensions~3D!, the
interplay between wetting and hydrodynamic boundary c
ditions can potentially lead to interesting additional physi
Work is currently in progress to investigate the behavior
the system in 3D. Meanwhile our findings indicate that p
terned substrates can provide an effective, nonmechan
means of mixing solutions and open the possibility of cre
ing spatially localized reaction chambers within microfluid
devices.
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